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A general perturbation theory of the statistics of spin interactions is developed in the form of a linked 
cluster expansion with particular emphasis on the Ising model. The theory applies to the evaluation of the 
expectation value of arbitrary spin functions as well as of the free energy. The thermodynamical consistency 
of the perturbation expansion is shown to arise from (1) variational principles satisfied by the free energy 
after a "renormalization procedure" has been carried out and (2) a generalized "Ward Identity" between 
renormalized quantities. These results are used to discuss inconsistencies in recent high-density theories of 
ferromagnetism and an improved theory obtained by the summation of all the convolution diagrams (nodal 
expansion) is briefly presented. The applicability of the method to general quantum mechanical many-body 
problems, including the theory of the Heisenberg model of ferromagnetism, is shown. 

I. INTRODUCTION 

RECENTLY, a perturbation approach to the study 
of spin interaction has been developed by Brout1 

based on a semi-invariant expansion of the partition 
function. The graphical representation of this expansion 
has been further analyzed by Horwitz and Callen.2 In 
a subsequent study of the free energy of a many-fermion 
system by Brout and the author,3 it appeared that the 
semi-invariant expansion of the partition function was 
conveniently supplemented by a method relying pri
marily on the use of quantum mechanical propagators. 
This established a link with the more usual many-body 
techniques analogous of those used in quantum field 
theory. 

In this paper we develop a complete perturbation 
theory from a propagator-type point of view with the 
Ising model Hamiltonian serving as a reference. This is 
done for the following purposes: 

(a) A greater simplicity and generality is achieved as 
compared to the original expansion for the Ising model. 
Many results of Sec. II , I I I , and IV are generalization 
of those obtained by Horwitz and Callen.2 

(b) The thermodynamical consistency of the pertur
bation expansion can be discussed. 

(c) The method can be immediately generalized to 
other problems as, for instance, thes tudy of the Heisen 
berg quantum mechanical model of ferromagnetism or 
the many-body fermion or boson system. 

In Sec. I I , a linked cluster expansion for any average 
of functions of spin operators is established for the 
Ising model of arbitrary spin in presence of an external 
magnetic field. The result is analogous to the Horwitz-
Callen2 rearrangement of Brout's1 original theory. 

In Sec. I l l , all the reducible linked graphs are elimi
nated essentially by a "renormalization procedure" 

* This work has been supported in part by the Office of Naval 
Research. 
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1 R. Brout, Phys. Rev. 115, 824 (1959). 
2 G. Horwitz and H. Callen (to be published). 
3 R. Brout and F. Englert, Phys. Rev. 120, 1519 (1960). 

similar to that of Horwitz and Callen.2 In particular, 
simple expressions for the magnetization and the energy 
in terms of renormalized quantities are given. 

The free energy is then expressed in terms of the 
renormalized quantities in Sec. IV. I t is shown, in 
general, that the free energy satisfies an infinity of 
variational principles and that these principles insure 
that the magnetization can be obtained correctly from 
the free energy. This can also be easily satisfied without 
summing the complete set of graphs provided this is 
done in a consistent way defined in the paper. 

The thermodynamical requirement that the suscepti
bility be equal to the fluctuation of the magnetization is 
studied in detail in Sec. V. This important consistency 
condition is shown to be a consequence of a generalized 
"Ward identity"4 between renormalized quantities. The 
violation of this theorem in high-density limit theories of 
ferromagnetism2'5 is related in Sec. VI, to inconsistencies 
of those theories. This is the motivation of presenting 
the sum of all the convolution diagrams (nodal expan
sions) as an improved high-density expansion. 

Finally in Sec. VII, the general structure of the 
perturbation approach is shown to be valid in quantum 
statistics and, in particular, for the Heisenberg model. 

II. LINKED CLUSTER EXPANSION FOR 
p-SPm OPERATORS 

We are interested in the calculation of the expectation 
value (Op) of a ^>-spin operator Op. Op is a product 
of pfjii where n* may take the values 1, 1 — 1/s, 
1 — 2/s, • • •, — 1 and i—1,2, • • •, n\ the value s of the 
spin is here taken arbitrary instead of the conventional 
value \ for the Ising model in order to stress the 
generality of the expansion. Typical Op are ya and MIXJ\ 
The former gives the magnetization and the latter 
enters the calculation for the energy and the suscepti
bility. The Hamiltonian is 

H = h Jlij VijlXijJlj—ZC Y,i Vi (2.1) 

4 J. C. Ward, Phys. Rev. 78, 182 (1950). 
5 R. Brout, Phys. Rev. 118, 1009 (1960); 122, 469 (1961). 

567 



568 F . E N G L E R T 

where v%j is the exchange integral taken between two 
spins and 3C is an external magnetic field (measured in 
suitable units); then 

(Op) = tr exp(-jM0Op/tr exp(-ffl) = trPOp, (2.2) 

where p is the density matrix of the canonical ensemble. 
We take now as the unperturbed Hamiltonian Ho the 

term — 3C Yi% M* m (2.1) where 3C is to be put eventually 
to zero at the end of the calculation if no external field 
is present; then from (2.2) 

(0P)= (2.3) 
tr exp(—pHo) exp[£(£ £)# «WMy)] 

or 
<expQ3(f £<, ̂ *iMtMi)]Op)o 

(0P)= , 
<expQ3(f £ # ftf/*tf*/)]>o 

where we have defined the unperturbed average 

tr exp(-j&ff0)Op 
(0P)o= :— = trpoOp. 

tr expi-pHo) 

(2.4) 

(2.5) 

The reason for the above-mentioned choice of Ho is, of 
course, that the density matrix po is factorizable into a 
product po=II*-iiNrPo* of density matrices po* relative 
to a single spin i. 

We begin the perturbation development from Eq. 
(2.4) by expanding both numerator and denominator as 
power series in ft. Thus 

(0,)= £ 
(-/3)n / » (-/3)n 

•<Hint"O,>0/Z; <tfint")o, (2.6) 
/ n=»0 % I n=0 # ! 

with 
£*int— 2 2L*y *̂iM»j w. (2.7) 

This leaves us with the evaluation of averages of product 
of the form 

(Hi/JLkPkHW ' 'Pp)o= (pi)o(pklJ>kllk)o(jli)Q' * •(Mp)o, 

i^k?*l^---p, (2.8) 

where the equalities result from the factorizability of p0. 
Clearly, were it not for the occurrence in the expansions 
of the numerator or indices already contained in Op the 
average (Op)o would by (2.8), factorize out of the 
numerator and the factor multiplying (Op)o would 
cancel against the denominator leaving (OP)=(OP)Q. 
More generally, the possibility of finding factors in the 
expansion of the numerator canceling against the de
nominator is prohibited by the fact that (/i**)^^*)*. A 
similar situation arises in the theory of quantum me
chanical propagators and there a cancellation theorem 
(the linked cluster expansion) can still be obtained by 
the use of Wick's theorem; here we use a more general 
procedure analogous to the one used in a previous study 
of the free energy of a many-body fermion system.3 

We represent (/z&n) as a sum of products of semi-

invariants in the well known Ursell-Mayer fashion6 

(^n)o=ZiPi}IliMpm> (2.9) 

where the sum is of all splits of the n factors into groups 
of pi factors; for instance: 

<M>o = itfi0, 

(jm\=Mx'Mf+Mf, (2.10) 
(unxij.)0=M1<'Mi'>Mi'>+3Mi0Mio+Mz'>. 

We have not written the index k since the averages as 
well as the semi-invariants are independent of the 
particular spin considered. Equation (2.9) [or (2.10)] 
may be inverted in a well known way6 to give Mp in 
terms of the moment {/*"); the first few Mv are given, 
for example, below: 

Jfi°=<n>o, 

W=(/A-<M>o2, 
M3

0=(M3)O-3(M2)O(M)O+2(M)O3. 

(2.11) 

For spin \ these may be expressed in terms of the re
duced unperturbed magnetization R0: 

Jfi°=*o, 

M2°=l-Ro2, 

Mz
Q=-2Ro(l-Ro2). 

(2.12) 

In general, the evaluation of Mp° is greatly simplified 
if one uses the following formula 

Mp°=d^\nZoi(x)/dxPJ (2.13) 

where x=/33C and Zo*(*0 is the "unperturbed partition 
function" (evaluated for Hint=0) for one spin i, that is, 

sinh[>(2$+l)/2*] 
Zo%x) = tr exp(fxix) = . (2.14) 

sinh(#/2s) 
[We have, of course, lnZo(^) = S*lnZ0

<(x) for the total 
unperturbed partition function.] Indeed, from (2.14) 
we have 

1 dnZf(x) 

Z0
l(x) dxn 

from which (2.13) follows immediately by straight
forward differentiation, as shown in detail in refer
ence (3). 

FIG. 1. Graphical representation of (l/10!)(|)10/3wpt^z)A/ 
XvhvpmvmnVnP

2v8t(M1
oy(M2

0)5(Ms
0)2. 

6 B. Kahn, thesis, Amsterdam 1938 (N. V. Noord-Hollandsche 
Uitgevers-maatschappij), Chap. III. 
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We now represent each term of the power series ex
pansion of the numerator of (2.4) in terms of graphs 
after expanding the averages in terms of semi-invariant 
following (2.8) and (2.9). To each factor \$va we as
sociate a bond i—j and to each semi-invariant Mp°(i) 
we associate a vertex labeled (i) with p lines coming to 
it. Such factors in the nth. order of the power series 
expansion arise from 

1 
-(^)n(pVij)(l3vki) - - • (fivmn)(jjLmjHkpr • 'M«MnOp)o, (2.16) 

where some indices may be equal. We have shown in 
Fig. 1 a graphical representation of such a term where 
0P is taken to be MPMQ- The total contribution of a given 
graph to the numerator can then be obtained by (1) 
multiplying all the §#*># related to the lines by all the 
Mp° related to the vertices, (2) dividing by »!, (3) 
summing over all spin indices without any restriction, 
and (4) multiplying the graph by the number of terms G 
in the expansion that give rise to the same graph. In 
Appendix A, we show that this number is G~2nnl/g 
when g is the number of symmetry operations trans
forming the graph into itself (the order of the symmetry 
group of the graph). 

We define now a linked graph as a graph that does 
not contain any disconnected part; for instance the 
graph of Fig. 1 is unlinked and the graph of Fig. 2(a) is 
linked (a graph is linked even if it is connected only 
through the spins contained in Op as in Fig. 2(b). From 
the above-mentioned rules it is clear that the 1/nl 
coming from the expansion of exp[/3 Yli.j §^/Aw] 
cancels with the nl arising from the G factor of the 
graph. So an unlinked graph is equal to the product of 
all the parts unlinked to the first (the one containing 
Op) and the first one. But the contribution in an un
linked graph of all the parts unlinked to the first is 
exactly the contribution of the denominator. Thus only 
the linked graphs that contain Op contributes to (Op). 

We now summarize the linked cluster theorem which 
we write in the symbolic form 

< O p ) = E ( ( ^ i n t ) n ; O p ) 0 l L 

by giving a set of rules exemplified at Fig. 3. 

(2.17) 

(a) Draw all the possible linked graphs ending at p 
fixed points (the p spins contained in Op). 

(b) To each line i—j attribute a factor fivij. 
(c) To each vertex attribute a semi-invariant Mn°> n 

FIG. 2. Linked 
graphs contributing 
tO (flpfiq). 

q 
(a) 

s 
p q 

(b) 

(a) 

p-^k <b> 

• i 
(O 

FIG, 3. Contributions to (AW)- (a) fi6^i,m,nto(viivinvm,,,Vn^Qj) 
X(M2°)6, [g=l ] ; (b) PiZktokWMfMt, [g=2]; (c) p-h 
XS».i.mfe-i)s(wy«)2(%»),(^0)W»0^r60

J [g = 16]. 

being the number of lines arriving at the vertex. (Each 
fixed point is to be counted as a line.) 

(d) To each graph attribute a factor 1/g. 
(e) Sum without restriction over all spin indices 

(except, of course, over the p fixed ones). 

These results are analogous to the graphical expansion 
of the free energy obtained by Horwitz and Callen2 by a 
rearrangement of Brout's1 initial expansions. 

One may notice that the above expansion is given 
in terms of the Mp° which are given functions of the 
external field 3C [for spin J. for instance, MP°=MP°(RQ) 
and 2?o=tanhj&Kf]. The linked cluster expansion is thus 
in a certain sense analogous to an expansion in a grand 
ensemble where 5C plays the role of a chemical potential 
and where the magnetization (/*) is not held fixed during 
the perturbation. 

III. RENORMALIZATION—ENERGY AND 
MAGNETIZATION 

We shall call a graph reducible at a vertex i if it can 
be split into different pieces by cutting the graph at i 
by a line that does not cut any bond. The parts left 
after the graph has been completely reduced will be 
called the irreducible parts of the graphs (Fig. 4) and a 

FIG. 4. Reducible and irreducible graphs, (a) Reducible 
graph; (b) irreducible graph; (c) irreducible parts. 
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FIG. 5. Self-energy 
diagrams. 

G; 
(a) (b) 

graph that cannot be reduced will be called irreducible. 
The vertex i will be called a point of reducibility. 

I t is clear that we could obtain an expansion involving 
only irreducible graphs if we were able to sum all the 
irreducible parts articulated to a given vertex. We shall 
show that such a procedure amounts to a simple re
definition Mn of the semi-invariants Mn° attached to 
an ^-order vertex and we shall call Mn the renormalized 
semi-invariant of order n? 

We define the nth order self-energy Gn° as the sum of 
all linked diagrams fixed at an nth order vertex, which 
is not a point of reductibility, evaluated following the 
previous rules, except for the fixed vertex which receives 
a factor of 1 (Fig. 5). The contribution to Mn of the 
parts terminating with k lines is by (2.13) 

Gk°Mn+k°= ZG°(dk/dxk)~]dn/dxn InZo'Or). 

For instance, the contribution of G3° to M2 is given by 
(Fig. 6) 

Mh°Gt°= [G30(d3/d*3)]d2/d*2 InZoKx). 

In general, the total contribution of mk irreducible 
parts of the Gk° type will be 

1 
-ZGk°(dk/dxk)lidn/dxn\nZoi(x), 

mk\ 

where mkl arises from the symmetry factor of the graph. 
I t is understood that d/dx operates only on lnZol'(#). 
Summing all the reducible parts attached to an nth 
order vertex we have 

CO 

E 
mk,mi' • 

or 

1 1 

=o mk\ mil 

Mn = 

X 

= exp 

dkl 
Gk°~ 

dxkJ 

mk 

r #1 
: Gf— 
L dxl-

X, k Gk 
0_ 

mi Qn 

InZo'O) 
dxn 

dk-

)xk-
Af „"(*). 

(3.1) 

(3.2) 

We may now reduce all the self-energy parts and express 
(3.2) in terms of the renormalized self-energy parts Gk 

so obtained; thus the equations 

M n = e x p [ L * Gk(d
k/dxk)2MJ(x)y (3.3) 

7 Mn is analogous to a renormalized propagator in field theory 
because our graphs are essentially analogous to the dual of the 
graphs used in field theory. That is our interaction lines corre
sponds to points where propagators touch; these propagators are 
drawn as lines because of the necessity of keeping track of time 
ordering in quantum field theory. In our classical theory, however, 
these lines collapse into a point which is our Mn° or Mn-

M; 

FIG. 6. Contribution to M2. A self-energy part G30 attached to a 
vertex M20 gives a M£ contribution to M2. 

together with the graph giving the irreducible Gk in 
terms of the Mn define the renormalized semi-invariant. 
We have thus obtained an irreducible cluster expansion 
for all the (Op) if we replace everywhere in our previous 
rule Mn° by Mn and draw only the graphs irreducibly 
linked to the fixed p vertices. We write this symbolically 
as 

<OP>=£<03ffi„,)";Op>i.L, (3.4) 

Many results can be expressed simply in terms of the 
Gk and Mk\ for instance, the magnetization is directly 
given by Mi as obtained from (3.3). 

We now express the energy in terms of the Gn. The 
energy is given by the 2-spin operator average {yaixj) 
multiplied by \va and summed over i and j . Equiva-
lently, we may also consider only all closed topologically 
different diagrams and sum all the different graphs 
obtained by fixing in these diagrams each line succes
sively in both directions and by multiplying the result 
by | . Instead of fixing a line we may calculate the total 
contribution of the closed topologically different dia
grams by fixing a vertex, thus expressing the result in 
terms of the Gn. As there are n lines arriving to a nth 
order vertex, the following formula for the energy 
appears plausible 

/ E\ 1 00 

) = _ £ 
V NJ 2(3 n-i 

tlMnGn. (3.5) 

Actually (3.5) is correct even when the symmetry of 
the graphs are taken into account. This is shown in 
Appendix B together with other topological properties 
of the graphs that will be used later. 

We illustrate formulas (3.3) and (3.5) by a simple 
example. Let us neglect all the d but Gi; the justifica
tion of such an approximation will be discussed in 
Sec. VI. We thus have 

Gi= (1/N) ZijPiUjM1 = (3v(0)Mh 

Gn=0, n>\ 
(3.6) 

with w(0)=(l/A7)EtjV/y. We then obtain the mag
netization curve 

(3.7) 
M x= exp[Gi(d/ds)]Jlf i°(*), 

Jifi=iifi0(tf+/MO)jifi), 

which is the well-known result of the molecular field 
theory8 with the Curie temperature given by Curie-

8 C. Kittel, Introduction to Solid-State Physics (John Wiley & 
Sons, Inc., New York, 1956), 2nd ed., Chap. 15. 
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Weiss value /3i>(0) = l. Similarly, the same approxima- graphs. Thus, the result (4.6) applied to irreducible 
tion in (3.5) gives the molecular field energy graphs with renormalized vertices would amount to an 

r/m — i ((\\M 2 n «N overcounting. Instead of "counting" the overcounting 
^~~ 'L ) — ̂ v\) i • \ • J w e sha;[! p r 0 ve that the following expansion is correct: 

IV. FREE ENERGY AND VARIATIONAL PRINCIPLES 
( l / i V ) l n Z = M 0 - E MnGn 

The free energy F=E—TS may be obtained from the 
energy by integrating over ft. I t is, however, more in
structive to deduce an explicit cluster expansion for the _j_ (1/2V) ]£ ((—(3Hint)

n)i L , (4.7) 
free energy because this will show the origin, in terms n=i 
of graphs, of the variational principles that the free 
energy satisfies. where MQ is obtained from (3.2) where Mo°(x) is defined 

We define a s lnZo(#). Thus the overcounting introduces two 
effects: (a) a renormalization of M0°(x); (b) a counter 

Z ( 0 = trexp[-/3(£ro+ZT i n t({))], (4.1) 
with term — E MnGn which may be interpreted as the sum 

n = i 

so 
# m t ( £ ) - £ # i n t - 2 E u frijuw, (4.2) Q£ a l l t h e g r a p n s w i th one point fixed. In terms of the 

Gn (4.7) may be written explicitly by using (3.5) 

- / 3 [ d F ( 0 / a a = d l n Z ( Q / d J = - / S < ( l / f ) f f i n t ( { ) > ^ (4.3) ^ ^ 

where the average is taken at the value £ of the coupling I ~Z )lnZ== M°~~^1 MnGn+^h / -jnMnGn(0, (4.8) 
constant. Then 

sinhr/35C(25+l)/2^1 where the G„(£) are functions of the coupling constant 
\nZ=N\n £ o n l y through the explicit dependence of Gn on the 

sinh(i&fe/2s) z^-bonds. 
r 1 / l \ We first prove that the right-hand side of (4.8), where 

-0 <-EU$)}dl. (4.4) 
the Gn are considered as functions of independent 

" ° ^ * variables an, is stationary with respect to variations of 
Applying (2.17) to (4.4) with t h e a * *or an = Mn where Mn is given by (3.3). Thus, we 

consider the function 
O p = Hint(g) = — | E t ; fyijUM, oo 

one finds <£(an) = Af0[G*(a„)]- E <XnGn(ak) 
n—I 

sinh[j83C(2$+l)/2.y] 
lnZ = A'ln « 1 /-i ^ 

sinh(/33C/2s) + E ~ / ~nanGn(^ak). (4.9) 

oo 1 / • * ( * £ 

E ~ / —nanGn( 

1 
+ E 0 ((—0#int)w;]£tifltiM*My)otL. (4.5) In general, we have from (3.3) for any variation that 

n=o 2 ( n + l ) does not affect x, 

However, l / 2 (w+l ) is precisely the ratio of the sum of r «> dk ~ 
symmetry factors of all the graphs obtained by fixing, 5JWn = exp ]T Gk 
in a closed graph, a line in all possible ways, to the L*=i dxk-
symmetry factor of a free graph (see Appendix B). We o r 

may then consider 1/2(^+1) as a symmetry factor for * 
a free graph. The evaluation of J F ( 1 ) - F ( 0 ) is then n = \ t l Mn+jdGj' ( 4 ' 1 0 ) 

identical to the evaluation of any Op except that the j n D a r t i c u i a r 

graphs are closed and considered as free. We thus write 
symbolically 5MQ= £ Mj8Gj (4 > 1 1 ) 

lnZ = lnZ0(/35C)+ £ <(-/3ffint)*>o,L. (4.6) Thus, 
y=i 

The expansion (4.6) is given in terms of Mn°, that is, ^M-T, [ M ^ a ^ - a ^ G ^ a * ) - E Gn(ak)8an 

in terms of the unrenormalized semi-invariants. In 
order to have an expansion in terms of the Mn we must i s v - f r / t 
reduce the graphs. This operation is here, however, not n^i~2 J V * r ^ a v - (4-12) 
straightforward because the free energy graphs are free 
and the reduction procedure was carried out for fixed To evaluate the variation of the last term we notice 
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that this term is the sum of all irreducible closed graphs 
evaluated using the symmetry factor of the free graph. 
The variation is equivalent to fixing all the vertices 
successively and replacing the an relative to it by a 
ban. We still evaluate the graph with the symmetry 
factor of the free graph. This is, however, equivalent to 
counting only the topologically different graphs with 
one fixed vertex together with the correct symmetry 
factor of such a graph. Thus we see that the variation 

00 

of the last term is simply E Gn(ak)dan. We have thus 
w = l 

obtained 

«*(«») = E lMn(ak)-an~]bGn{ak)y (4.13) 

and if all the ak = Mkj then 

5<t>(an)\«n^Mn = 0. (4.14) 

So <t>(an) is stationary with respect to any variation of 
the an around the value Mn. 

Next we evaluate d4>[Mn (£)]/<*£, where <xn is replaced 
by the correct M» for a given coupling constant £. In 
calculating the derivative we only have to consider the 
explicit dependence of G«(£) in the last integral because 
of (4.14); thus, 

d4>[Mn(&l 1 • 
— = - £ nMn(QGn(Q 

d% 2£ n-i 

= (i/N)((-e/a)BUQh; (4.15) 
so 

Nd40*n(Qydl:=d]nZ(Q/dt. (4.16) 

Moreover for £=0, iV# is equal to lnZ0 so we have 
proved that N<t>=\nZ and the validity of the relation 
(4.7) for the free energy is established. The free energy is 
then stationary with respect to any variation of the 
renormalized semi-invariant around their correct value; 
these variational principles are equivalent to the equa
tions (S.3) defining these Mn* 

The importance of these variational principles is that 
they insure automatically the thermodynamical relation 

(l/N)dlnZ/dx=Mi. (4.17) 

In order to establish this we first calculate the derivative 
of Mn with respct to x; this differs from the result ob
tained in (4.10) because we now have to vary x in (3.3). 
This simply adds a derivative of Mn°(x) with respect 
to x to the previous result and thus, 

dMn °° dGj 
= E Jf m*—+Mn+ h (4.18) 

dx *-i dx 

and, in particular, 

dM o *> dGj 
= E M,—+Mu (4.19) 

dx y-i dx 

With the help of (4.19) we obtain by differentiation 
of (4.7) 

dlnZ r oo 
« Jf i - E GjidMj/dx) 

Ndx Li-i 
* d rld% -] 

- L — * / -*MnGn(Q I 
*-i dx J o £ J 

The same reasoning that led to the variational principles 
now leads to the vanishing of the quantity between the 
brackets so that (4.1) is proved. 

We now state the theorem: In any order of perturba
tion theory (of the evaluation of the G„), the free energy 
obtained by (4.7) satisfies the variational principles and 
thus the relation (4.17) if one uses a "complete set" of 
self-energies Gn; that is all the Gn deduced from any 
member of the set by fixing any vertex in a defining 
graph. 

This theorem is an immediate consequence of the 
proof of the variational principle given above. I t pro
vides a criterion of consistency for the use of the set of 
graphs to be included in a given approximation to the 
free energy, namely, one must use only a "complete set" 
of Gn- We shall see, however, in the next section that 
such a criterion is not sufficient to define a completely 
thermodynamically consistent approximation to the 
free energy. 

V. SUSCEPTIBILITY AND THE GENERALIZED 
"WARD IDENTITY" 

Differentiating (4.17) with respect to x we obtain the 
well-known thermodynamical relation 

(1/N)d2 lnZ/dx2=dM1/dx=x, (5.1) 

where x is the isothermal susceptibility. On the other 
hand we obtain by differentiating (4.1) twice with 
respect to x: 

Nx=((Z<Vi)2)-<Lii*i)*. (5.2) 

This is the usual type of relation relating response func
tions to fluctuations; its physical significance is very 
important because (5.2) guarantees that the suscepti
bility is always positive and that infinities in the sus
ceptibility and in the distribution function occur simul
taneously. We shall investigate the translation of (5.2) 
into perturbation theory. 

We write (4.18) in the following form: 

dMn « oo /dGj\ dMk 
~—=i:i,MnJ +Mn+1, (5.3) 

dx y-i *-i \dMk/gr dx 

where (dGj/dMk) g r means the derivative of Gj considered 
as a function of the independent variables Mk through 
the graphical definition of Gy. That is, more precisely, 

(dGj/dMk)gT= (dGj/dak)a^Mk. (5.4) 
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We may also write 

funct (dMi/dGn) funct? 

(5.5) 
where here the Mn are considered as a function of the 
Gj through the functional dependence (3.3). We now 
define the matrices R and S such that 

(R)nm= (R)mn = Mn+m= (dMn/dGm) funct, (5.6) 

(S)„m=(dG„/dlfm)g r , (5.7) 

and the vectors M and M+ denned by 

(M)»=Jf», . 

(M+).=JflH.i. 

Equation (5.3) can then be solved as a matrix equation 

^M/^=[1 -RS] - 1 M+. (5.9) 

The first component of (5.9) is the susceptibility; it is 
easily seen that dMi/dx becomes infinite if 

de t [ l -RS]=0 . (5.10) 

Thus (5.10) may be considered as an equation defining 
the possible phase transitions of the system. We finally 
note that from (5.3) 

dMi * co / dGn\ dMk 

= E Z 1 Mn+1 +M2 

dx „-! k*~i\dMk'gr dx 
dM 

= M+S—+M2 , (5.11) 
dx 

or, with the help of (5.9), 

x=^ l f i / ^=M+S[ l -RS] - 1 M++M 2 . (5.12) 

We now evaluate the right-hand side of (5.2) directly 
from the propagator formalism. This involves the 
calculation of 02=(M»My)- We have (Fig. 7) 

<*W = £ » Em Mt+iG^Mn+i+Mf+tijM* (5.13) 

where G#nw is the contribution to (jUiMy) from graphs 
linked to i with n lines and to j with m lines, the semi-
invariant relative to the extremities i and j being 
replaced by 1. Introduction of the matrix G»y such that 

(G</)n»=G</»» (5.14) 
leads to 

(^My)=M+G,yM++(M1)2+5i/M2 (5.15) 
and 

(V^)[((L.-^)2)-<E^.)2]=M+G(0)M++M2) (5.16) 

FIG. 7. Contributions to (ww) for i^j. 
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where we have introduced the Fourier transform of G#: 

1 
6 ( q ) = - E 6 ^ ^ . (5.17) 

N a 

We now express G# in terms of renormalized bond 
matrix C# such that (Ctf)TOn=C#mn represents the sum 
of all the graphs connecting i and j , respectively, with 
m lines arriving at i and n lines arriving at j and con
taining no articulation point. An articulation point is a 
point where the graph can be cut into two pieces, one 
linked to i, the other to j , by a single line not cutting 
any line of the diagram (Fig. 8). We readily express 
Gn in terms of Ci3: 

Gir^Ci^+Zk I 7 ( a Cit^M y+aCkj«
n+ 

or 

G</= (VfEfc G«RC*,+ • • •. (5.18) 

In terms of the Fourier transform C(q) of C#, 

C(q) = (1/N)Z» C^"- <'«-,), (5.19) 
we have 

G(q) = C(q)+C(q)RC(q)+-.. 
or 

G(q) = C(q)[l-RC(q)]-'. (5.20) 
This equation appears as a matrix generalization of a 
similar relation obtained by Meeron in the study of the 
nodal expansion of a gas.9 We shall come back to the 
nodal expansion later. 

Using (5.20), we may write (5.16) as 

^ [ < ( E < M . ) 2 > - < E ; M . > S ] 

= M+C(0)[l-RC(0)]-lM++Jtf2. (5.21) 

Comparing (5.12) and (5.21), we see that (5.2) will be 
verified if 

S=C(0), (5.22) 
or, equivalently, 

(TTT = h r r =cc(0)]mn=(i/iv)Ecy-(5.23) 
\dMm/gr \dMn/eT H 

The identity (5.23) follows from the definition of Gn: 
Taking the derivative with respect to Mn is equivalent 
to taking the sum of all graphs connecting two points, 
one with n lines arriving at it, the other with m lines, 

/ t V Articulation points. 

J x J # 

(a) (b) 

FIG. 8. Renormalized bonds, (a) Contribution to the re-
normalized bond C.j32; (b) Contribution to G./1 containing three 
articulation points. 

9 E. Meeron, Phys. Fluids 1, 189 (1958). 
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and then summing freely on the indices relative to the 
two points. This is precisely ]£tjC#. We notice that if 
by fixing p different Mm in a graph contributing to G„ 
we obtain the same contribution to [C(0)]m n , the result 
is automatically divided by p because of the symmetry 
factor of the graph. 

The relation (5.22) which insures the thermo-
dynamical consistency condition (5.2) is very similar to 
the "Ward Identity" in Quantum Electrodynamics.4 

I t relates the renormalization of the semi-invariant Mn 

to the bond-renormalization: These renormalizations 
must be carried out simultaneously in order to satisfy 
the theorem. The fact that this is realized if one sums 
the whole perturbation series but generally it is not 
satisfied for a partial summation of graphs is related to 
inconsistencies that have appeared in recent theories of 
ferromagnetism. This problem will be examined now. 

VI. HIGH DENSITY LIMIT EXPANSIONS AND 
THE NODAL EXPANSION 

If we define z qualitatively as the number of spins in 
the "range" of the exchange potential z>#, one may 
argue on physical grounds that if z —»QO the Weiss 
molecular field theory of ferromagnetism becomes 
valid.5 This then implies that in the neighborhood of the 
Curie point we have, for a high-density system of 
spin (high Z), 

(!/#)£* fc^(VW^l, (6.1) 
where j is an average exchange potential. From (6.1) 
we see that we may classify, in the region of the Curie 
point, unrenormalized graphs by means of powers of 
1/z. Each bond carries a factor of 1/z and each sum
mation but one carries a factor of z. To check the con
sistency of this method we first have to sum all the 
graphs or order 1 and show that we obtain the molecular 
field results. The only graphs of order 1 are open chains 
(Fig. 9) and, in terms of renormalized graphs, this 
means that all G% but Gi are to be put equal to zero. We 
know from Sec. I l l that this leads precisely to the Weiss 
theory so that the validity of the 1/z classification is 
established. 

One may then try to evaluate the first correction to 
the Weiss molecular field, that is the 1/z terms. This 
has been done by Brout5 and by Horwitz and Callen2 

in two different, but nearly equivalent, ways. We shall 
discuss here once more the argument. 

At first it appears that only the rings (and chains) 
contribute a factor 1/z (to the free energy, for instance). 
[Fig. 10(a)]. However, for large rings (with more than 
z vertices) any correction of the type 10(b) which 
would be of order 1/z2 might appear with the second 

FIG. 9. Graphs of 
order 1. 

ring attached to any n>z vertices, thus restroring a 
contribution of order 1/z. Thus, an accurate evaluation 
of the free energy to order 1/z must include vertex re-
normalization not only by means of chains but also by 
means of rings. This, however, does not necessarily 
include all the graphs of order 1/z for if the ring be
comes increasingly large, any vertex renormalization or 
any renormalization may finally contribute to the order 
considered. 

As one may expect that in the ordered phase, large 
rings may be very important, a correct evaluation of all 
the 1/z graphs becomes impossible and the 1/z expan
sion itself probably loses its meaning. The best one may 
hope for is an approximate high density theory if one 
sums all the rings and chains, together with the ap
propriate vertex renormalization by means of rings and 
chains. This is the Horwitz-Callen theory and may be 
obtained from our general formalism by neglecting all 
the d but Gi and G2 (Fig. 11). 

FIG. 10. (a) 1/z 
contribution; (b) 

(a) 1/z2 contributions. 

(b) 

We now discuss the consistency of such an approxi
mation. First, as was already established by these 
authors, it is clear that the variational principle is 
obeyed as a consequence of the fact any graph obtained 
by fixing a vertex in one of the graphs of Fig. 11 is still 
a contribution to G\ or G2. Thus, the thermodynamical 
relation d \nZ/dx=Mi is verified. On the other side the 
"Ward Identity" is not verified because no bond re
normalization has been done. Thus we have no 
guarantee that the Curie point obtained by the diverg
ence in long-range order (or in the specific heat) 
coincides with the infinity of the susceptibility. In fact, 
the inconsistency of the model is even worse because it 
had appeared10 that the infinity of the susceptibility 
occurs for finite magnetic field above the Curie point 
obtained by the singularity in the specific heat. This is 
not only thermodynamically inconsistent but the second 
result violates a general theorem due to Lee and Yang.11 

m
 10 This was first observed by M. Coopersmith. A detailed analy

sis of the nature of the inconsistency will be given elsewhere by 
G. Horwitz to whom we are very much indebted for many con
tributions to the analysis of this section. 

11 T. D. Lee and C. N. Yang, Phys. Rev. 87, 410 (1956). 
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In order to correct this inconsistency we then have 
to renormalize the bonds by means of rings with re-
normalized bonds. This leads to the sum of all the 
graphs with no crossing lines; it is the generalization of 
the "convolution approximation" or "nodal expansion" 
recently studied in the theory of imperfect gases.9 

The convolution approximation will obviously satisfy 
the variational principle because the consistency re
quirement is verified. The Ward identity will, however, 
not be exactly satisfied because the renormalization of a 
bond by a graph of the convolution expansion may lead 
to a graph not contained in the original approximation. 
The convolution approximation is thus not a completely 
thermodynamically consistent approximation and this 
will also be true for the imperfect gas. However, it will 
in fact be impossible to have a consistent bond and 
vertex renormalization without summing all the graphs. 
This shows the difficulty of handling a perturbation 
theory in the neighborhood of a phase transition. Indeed, 
anywhere else, such discrepancies would be small effects, 
for if we stick to our initial 1/z classification we find 
that any nonconvolution correction is at least of order 
1/z3. But as this expansion is meaningless for large 
rings, this cannot be trusted in a phase transition region 
and trouble may occur in the analytic behavior of the 

FIG. 11. Self-
energy graphs in 
the 1. Horwitz-Callen r 
theory. G« 

(a) 

divergent function. Thus, in short, the convolution ap
proximation appears, qualitatively, as the simplest 
theory of a high-density expansion: it satisfies the 
variational principle and contains all the first required 
bond renormalized corrections to the Horwitz-Callen 
theory. This is why, despite the lack of complete con
sistency of the convolution approximation, we shall give 
here the formal summation of all the convolution graphs. 

Finally, we shall close this discussion by mentioning 
that Brout's theory of the high density suffers exactly 
from the same inconsistencies as the Horwitz-Callen 
theory and for the same reasons. In fact, the twTo theories 
are nearly equivalent, the difference being a rather un
important difference in the vertex renormalization. 

We evaluate the correlation function (mm) for i^j', 
and from this the energy, hence all the thermodynamical 
quantities may be determined. From (5.15) we have 

<M,My> = M+GtfM++ilfi2, i^j. (6.2) 

The problem is thus to evaluate the correlation 
matrix G#. 

We separate the contributions to G;y into two parts: 

(a) The graphs with no articulation points. This is 
given by the bond-renormalization matrix Cty. 

(b) The graphs with articulation points. These con-

(a) 

FIG. 12. Contribution to C»y in the convolution approximation. 
(a) ladders of ZJ# bonds contributing to C;y; (b) ladders of T»y bonds 
contributing to C»y; (c) mixed ladders of Vij bonds and T»y bonds. 

tribute a matrix T# to G#. Thus 

Gij=Cij+Tij. (6.3) 

From (6.3) and (5.20) we obtain the general relation 
between C»y and 
C(q )andT(q ) : 

RT(q) = [ R C ( q ) > 

between C»y and T# in terms of their Fourier transform 

l-RC(q) 
(6.4) 

Equation (6.4) is general. We now determine Qy in 
terms of T»y in the convolution approximation. If only 
graphs without crossing lines are to be counted, then 
only the following contribution to C»-y arise 

(a) any number of IUJ bonds between i and j ; that is, 
all "ladders" of v{j [Fig. 12(a)]; 
(b) any ladders of graphs with articulation points with 
the exception of a single TV type of graph [Fig. 12(b)]; 
(c) any mixture of (a) and (b) graphs [Fig. 12(c)]. 
In order to sum these graphs we multiply each line 
arriving at i by p and each line arriving at j by p\ p 
and p' being arbitrary variables. Then we evaluate 

00 00 

E E p-Ca-'p'*. (6.5) 

The contribution to (6.5) of the graphs with na$ T^ 
bonds and the graphs with m v^ bonds is then 

1 1 

m! nap 1 

The sum of all the ladders of Vi3- and Tyy bonds then 
contributes 

E £ —{jnap'lr ft —t>«r*«OT»«*-i 
m=0 n«0=O ml a=l,/S=l flapl 

- e x p [ > ^ ' + E « , ? paTif*p'r\-l. 
Then 

E«* poG^p'^explpvap'+Za,? p'Tiftp'?! 
-l-Hajp'TiW (6.6) 

for arbitrary p and p'. 
The relation (6.6) may be written in a more concise 

form if we introduce an angle representation A (<£,<£') of 
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a matrix A by the reciprocal relations 

A(*,*') = E E [A]nme-*n*e+iwi*', 

[A]" 

(6.7) 

\27r/ JO 

2 /»2x / *2T 

o Jo 

0 for « or w<0. Writing p=^e~{^ and 

(6.8) 

where [A] 
^'=$+*>', we obtain 

Go<*,*O = exp[>v<y+T<l<0,*/)]-l-T</(^O 

where the matrix v# has only its 1-1 element nonvanish-
ing and equal to vy. Equations (6.4) and (6.8) define 
a nonlinear convolution integral equation both in con
figuration and angle space for C# or T»y. If the R matrix 
is calculated by approximating all the semi-invariants 
by a single constant, Eqs. (6.4) and (6.8) reduce to 
scalar equations for a single nonvanishing component 
(#o,0o) in angle space and are then equivalent formally 
to Meeron's equation for imperfect gases.9 These equa
tions lead then to the remarkable result proved by 
Green12 that G(q)(#G,0o) diverges for q—»0 like l/q, 
thus giving an order correlation varying like 1/r2. This 
result is reminiscent of the value l/r7/4 obtained by 
Domb and Sykes.13 Of course, the averaging of the 
semi-invariants is not a priori a valid approximation but 
it is interesting to note that due to the nonlinear character 
of the relations (6.4) and (6.8) a behavior like a l/q 
divergence (which might be related to a logarithmic 
divergence for the specific heat) may arise while this 
would never be the case in an approximation of the 
perturbation series such as that of Callen and Horwitz 
or Brout's spherical model. This, in our opinion, would 

l / rfi r1* 

justify a more extensive study of the nodal expansion of 
the Ising model but this is outside the scope of this paper. 

VII. GENERALIZATION OF THE LINKED-CLUSTER 
EXPANSION—QUANTUM STATISTICS 

Our analysis of perturbation expansions is based on 
the "propagator'' formalism developed in Sec. II. It is 
clear that this analysis is not restricted to the Ising 
Model Hamiltonian. First the possible values that can 
be taken by m are irrelevant. More important is the 
fact that the introduction of quantum mechanics does 
not alter fundamentally the formalism. Namely, if the 
m are replaced by noncommuting operators (for in
stance, the components Six, sp, Siz of the spin i in the 
Heisenberg model of Ferromagnetism) one has to con
sider the operators in the "interaction representation" 

fii(l3') = exp(p'Ho)ni exp(-/3'#0), (7.1) 

and, in the "Heisenberg representation," 

m(ft) = exp03'#)Mi exp(-/3'tf), (7.2) 

where ft is a real parameter. We have still used m in
stead of Six, Siv, Si* to simplify the notation and keep 
the generality of the reasoning. 

One may then ask to evaluate the quantum mechani
cal propagator, 

<Op(fcft• * 'PP))=(Tn(Pi)• • •**,(£,)>, (7.3) 

where T is the usual "time-ordering" operator placing 
likffik) on the left or on the right of m(fii), respectively, 
if 0k>Pi or pk<Pi. The analysis may now be carried 
through entirely following the pattern of Sec. II, using 
time-ordered product of operator. For instance, (2.6) 
becomes 

n-onl\Jo Jo / < / 

£ - / / " • • • / " • • -dPnTHiM •. •5int63«)\ . (7.4) 
n - 0 « ! \ J o Jo ' 0 

If one then defines time-ordered semi-invariant by using 
the time-ordered generalization of (2.9), one obtains the 
linked-cluster expansion (2.11) in its time-ordered 
generalization. General expansions for thermodynamical 
quantities follow in a straightforward manner as well as 
variational principles14 and "Ward identities". 

A detailed example of the quantum mechanical linked 
cluster expansion as applied to the Heisenberg model of 
ferromagnetism is differed to a separate publication. If 
one applies this method to a system of f ermions by using 
the creation and annihilation of a particle a^ a£ one 

12 M. Green, J. Chem. Phys. 33, 1403 (1960). 
C. Domb and M. F. Sykes, Proc. Roy. Soc. (London) A235, 

247 (1956). 
14 See for instance T, 

118, 1417 (1960). 
M. Luttinger and J. C. Ward, Phys. Rev. 

obtains again the expansion used by Brout and the 
author3 and its generalization to bosons as well. 
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APPENDIX A 

G Factor of Graph 

Consider a term arising from the nth order term in 
the expansion of the numerator of (2.4). We write this 
term symbolically in the following way 

{a'b"; c"d'; e'f"; g'h"; Op")o. (Al) 
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FIG. 13. Graph correspond
ing to the term represented 
by (Al). ^ ^ 

Here, each semicolon separates two interactions VXJMUJ. 
The Mi factors are represented by letters a, b, c, dy e, / . 
and an mth order semi-invariant by a contraction sign 
of bars and superscript dots, etc. Op is any p-body 
operator and in example (Al) has only one spin index 
contracted with interaction factors. The graph corre
sponding to (Al) is the fourth-order graph represented 
in Fig. 13. 

All the terms of the expansion are obtained if one 
draws all possible sets of contraction signs in any order. 
Many of these however give rise to an identical graph 
representation. 
These are 

(1) All the terms differing from a given one by a 
permutation of the n interactions. This contributes a 
factor nl to G\ 
(2) All the terms differing by an interchange of the 
two contractions ending in the same interaction. For 
instance, the two terms 

(ab";c"d'; e'f";g'h"; Op")o, 

{ab"; c"d'\ e"f; g'h"; Op")0y 

are represented by the same diagram drawn in Fig. 13. 
In general, this contributes a factor 2n to G. 
(3) In counting all the diagrams with a factor 2nnl we 
have overcounted all the terms which are transformed 
into themselves under the operations performed in (1) 
and (2). For instance, a permutation of a, b and c, d 
or of e, f and g, h in the term (Al) does not lead to a 
new term of the expansion. Thus, we must divide the 
combinatorial factor 24-4! by 4. In general, we clearly 
have to divide the factor 2nnl by the number g of sym
metry operations that transform the graph into itself. So 

G=2nnl/g. 

APPENDIX B 

(A2) 

We shall prove (3.5) and some topological properties 
of the diagrams. 

We recall from Sec. I l l that the energy may be evalu
ated by considering all closed topologically different 

n-
0 -

f£_-3L. •t „ .Z~— x No. of ends 
(c) 9P.f. 

_L J> 1 
A "T2(n*1) 
1 I _J _ 
12"~2 *2(n4l ) 

|(fx2) 

1*3> 

FIG. 14. Symmetry factor of graphs. 

diagrams and summing all the different graphs (with 
their corresponding factors) obtained by fixing in these 
diagrams successively each line. The result is to be 
multiplied by J. 

(a) We characterize the sum ]T Vg obtained in that 
way by the index l.f. (line fixed). If we compare this 
factor with the g factor of the same topological graph 
considered as free (gi.)> we have 

£ l/gi.,. = 2 (n+ l ) /* f . , (Bl) 

where (n+1) is the number of lines of the closed graph. 
(Fig. 14). Indeed, (3.5) is obvious if all the graphs ob
tained by the fixing of a line are different, if some graphs 
are identical, this is still true because the factor reducing 
the left hand side of (3.5) is then accounted for by the 
enlarged symmetry factor gf.. Relation (Bl) was used 
in Sec. IV in order to study the free energy. 

(b) Consider now the sum of 1/g obtained by fixing 
a vertex instead of line and multiplying each graph by 
the number of lines terminating at the fixed vertex. The 
same reasoning that led to (Bl) leads to 

XXl/gP.f.)Xnumber of ends 

= total number of endsX (1/gt.) = 2(n+ l)/g f . , (B2) 

where the index p.f. means "point fixed" (Fig. 14). The 
last equality in (B2) results from the fact that the total 
number of each is equal to twice the number of lines. 
Comparing (Bl) to (B2), we have 

2] l/gi.f. = ZXVgp.OXnumber of ends. (B3) 

From (B3) it follows immediately that we may express 
the energy in the form 

/ E\ 1 oo 
= - L nMnGn, 

\ N/ 2j3 »-i 
which is Eq. (3.5). 


